Automated Interestingness Measure Selection for Exhibition Recommender Systems

نویسندگان

  • Kok Keong Bong
  • Matthias Jöst
  • Christoph Quix
  • Toni Anwar
چکیده

Exhibition guide system contain various information pertaining to exhibitors, products and events that are happening during the exhibitions. The system would be more useful if it is augmented with a recommender system. Our recommender system would recommend users a list of interesting exhibitors based on associations that mined from the web server logs. The recommendations are ranked based on various Objective Interestingness Measures (OIMs) that quantify the interestingness of an association. Due to data sparsity, some OIMs cannot provide distinct values for different rules and hamper the ranking process. In mobile applications, the ranking of recommendations is crucial because of the low real estate in mobile device screen sizes. We show that our system is able to select an OIM (from 50 OIMs) that would perform better than the regular Support-Confidence OIM. Our system is tested using data from exhibitions held in Germany.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interestingness of association rules in data mining: Issues relevant to e-commerce

The ubiquitous low-cost connectivity synonymous with the internet has changed the competitive business environment by dissolving traditional sources of competitive advantage based on size, location and the like. In this level playing field, firms are forced to compete on the basis of knowledge. Data mining tools and techniques provide e-commerce applications with novel and significant knowledge...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Evaluation of recommender systems: A multi-criteria decision making approach

The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014